题目内容
如图,在半径为
【答案】分析:首先要明确S阴影=S扇形OAB-S△OCD-S正方形CDEF,然后依面积公式计算即可.
解答:
解:连接OF,
∵∠AOD=45°,四边形CDEF是正方形,
∴OD=CD=DE=EF,
于是Rt△OFE中,OE=2EF,
∵OF=
,EF2+OE2=OF2,
∴EF2+(2EF)2=5,
解得:EF=1,
∴EF=OD=CD=1,
∴S阴影=S扇形OAB-S△OCD-S正方形CDEF=
-
×1×1-1×1=
.
点评:本题失分率较高,学生的主要失误在于找不到解题的切入点,不知道如何添加辅助线,也有学生对直角三角形三边关系不熟悉,误认为∠FOB=30°造成失误.
解答:
∵∠AOD=45°,四边形CDEF是正方形,
∴OD=CD=DE=EF,
于是Rt△OFE中,OE=2EF,
∵OF=
∴EF2+(2EF)2=5,
解得:EF=1,
∴EF=OD=CD=1,
∴S阴影=S扇形OAB-S△OCD-S正方形CDEF=
点评:本题失分率较高,学生的主要失误在于找不到解题的切入点,不知道如何添加辅助线,也有学生对直角三角形三边关系不熟悉,误认为∠FOB=30°造成失误.
练习册系列答案
相关题目
A、
| ||||||
B、
| ||||||
C、
| ||||||
D、
|
| A、5 | B、4 | C、3 | D、6 |