题目内容
8.分析 在BC下方取一点D,使得三角形ABD为等边三角形,连接DP、DC,根据等边三角形的性质得到AD=AB=AC,求出∠DAC、∠ACD、∠ADC的度数,根据三角形的内角和定理求出∠ABC=∠ACB=50°,即∠CDB=140°=∠BPC,再证△BDC≌△BPC,得到PC=DC,进一步得到等边△DPC,推出△APD≌△APC,根据全等三角形的性质得到∠DAP=∠CAP=10°,即可求出答案.
解答
解:在BC下方取一点D,使得三角形ABD为等边三角形,连接DP、DC
∴AD=AB=AC,
∠DAC=∠BAC-∠BAD=20°,
∴∠ACD=∠ADC=80°,
∵AB=AC,∠BAC=80°,
∴∠ABC=∠ACB=50°,
∴∠CDB=140°=∠BPC,
又∵∠DCB=30°=∠PCB,BC=CB,
在△BDC和△BPC中,
$\left\{\begin{array}{l}{∠CDB=∠BPC}\\{∠DCB=∠PCB}\\{BC=BC}\end{array}\right.$,
∴△BDC≌△BPC,
∴PC=DC,
又∵∠PCD=60°,
∴△DPC是等边三角形,
在△APD和△APC中,
$\left\{\begin{array}{l}{AD=AC}\\{AP=AP}\\{PD=PC}\end{array}\right.$,
∴△APD≌△APC,
∴∠DAP=∠CAP=10°,
∴∠PAB=∠DAP+∠DAB=10°+60°=70°.
故答案为:70°.
点评 本题主要考查对等腰三角形的性质,等边三角形的性质,全等三角形的性质和判定等知识点的理解和掌握,作辅助线得到全等三角形是解此题的关键,此题是一个拔高的题目,有一点难度.
练习册系列答案
相关题目
13.某中学为了解学生一周在校的体育锻炼时问,随机地调查了50名宇生,结果如表所示:
则这50名学生这一周在校的平均体育锻炼时间是( )
| 时间(小时) | 5 | 6 | 7 | 8 |
| 人数 | 10 | 15 | 20 | 5 |
| A. | 6.2小时 | B. | 6.4小时 | C. | 6.5小时 | D. | 7小时 |