题目内容
如图,下列推理正确的是( )
A. ∵∠1=∠3,∴∥ B. ∵∠1=∠2,∴∥
C. ∵∠1=∠2,∴∥ D. ∵∠1=∠3,∴∥
函数是反比例函数,则( )
A. m≠0 B. m≠0且m≠1 C. m=2 D. m=1或2
如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2006,最少经过__次操作.
△ABC中,D为BC边上的一点,BD:BC=2:3,△ABC的面积为12,则△ABD的面积是_______.
如图,直线与轴交于点B,与轴交于点C,已知二次函数的图象经过点B、C和点A(-1,0).
(1)求该二次函数的关系式;
(2)若抛物线的对称轴与轴的交点为点D,则在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
先化简,再求值:,其中.
在边长为1的正方形ABCD中,点E是射线BC上一动点,AE与BD相交于点M,AE或其延长线与DC或其延长线相交于点F,G是EF的中点,连结CG.
(1)如图1,当点E在BC边上时.求证:①△ABM≌△CBM;②CG⊥CM.
(2)如图2,当点E在BC的延长线上时,(1)中的结论②是否成立?请写出结论,不用证明.
(3)试问当点E运动到什么位置时,△MCE是等腰三角形?请说明理由.