如图,在中, ,点两边的距离相等,且

(1)先用尺规作出符合要求的点(保留作图痕迹,不需要写作法),然后判断△ABP的形状,并说明理由;

(2)设,试用的代数式表示的周长和面积;

(3)设交于点,试探索当边的长度变化时,的值是否发生变化,若不变,试求出这个不变的值,若变化,试说明理由.

【答案】(1)作图见解析;ΔABP是等腰直角三角形. 理由见解析;(2) (3).

【解析】(1)依题意,点P既在的平分线上,

又在线段AB的垂直平分线上.

如图1,作的平分线

作线段的垂直平分线

交点即为所求的P点。┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3分

是等腰直角三角形.

理由:过点P分别作,垂足为E、F如图2.

平分,垂足为E、F,

.

又∵ ,∴ .┄┄┄┄┄┄┄┄4分

.

, 从而.

是等腰直角三角形. ┄┄┄┄┄┄┄┄5分

(2)如图2,在中,

. ∴.

可得.

.

中,

. ∴. ┄┄┄┄6分

所以的周长为:. ┄┄┄┄7分

因为的面积=的面积的面积的面积

==

=)┄┄9分

.

(3)过点分别作,垂足为如图3.

.┄┄┄┄10分

①┄┄┄┄┄┄┄┄11分

② ┄┄┄┄┄┄12分

①+②,得 ,即 .

, 即 ┄┄┄┄13分

【点睛】(1)由题意作出∠ACB的角平分线和线段AB的垂直平分线可求出点P,然后证明Rt△APE≌Rt△BPF即可;

(2)由PA=PB,PA=m,可得出 ,由Rt△APE≌Rt△BPF,△PCE≌△PCF,可得CA+CB=CE+EA+CB=CE+CF=2CE,在Rt△PCE中, PC=n,可知 ,即 ,最后求出周长和面积;

(3)由平行线分线段成比例定理得到 , 是解答本题的关键.

【题型】解答题
【结束】
15

⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG,与弦BC相交于点D,连接AG、CP、PB.

(1)如图1,求证:AG=CP;

(2)如图2,过点P作AB的垂线,垂足为点H,连接DH,求证:DH∥AG;

(3)如图3,连接PA,延长HD分别与PA、PC相交于点K、F,已知FK=2,△ODH的面积为2,求AC的长.

(1)证明见解析; (2)证明见解析; (3)AC=10 【解析】 试题分析:(1)利用等弧所对的圆周角相等即可求解; (2)利用等弧所对的圆周角相等,得到角相等∠APG=∠CAP,判断出△BOD≌△POH,再得到角相等,从而判断出线平行; (3)由三角形相似,得出比例式,△HON∽△CAM,,再判断出四边形CDHM是平行四边形,最后经过计算即可求解. 试...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网