题目内容
7.分析 设∠DAC=x°,则∠B=2x°,∠BDA=∠C+∠DAC=50°+x°.根据等腰三角形的性质得到∠BAD=∠BDA=50°+x°,根据三角形的内角和列方程即可得到结论.
解答 解:设∠DAC=x°,则∠B=2x°,∠BDA=∠C+∠DAC=50°+x°.
∵BD=BA,
∴∠BAD=∠BDA=50°+x°,
∵∠B+∠BAD+∠BDA=180°,
即2x+50+x+50+x=180,
解得x=20.
∴∠BAD=∠BDA=50°+20°=70°,
∴∠BAC=∠BAD+∠DAC=70°+20°=90°.
点评 本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.
练习册系列答案
相关题目
17.当自变量x增大时,下列函数值反而减小的是( )
| A. | y=$\frac{x}{2}$ | B. | y=2x | C. | y=-$\frac{x}{3}$ | D. | y=-2+5x |
2.
如图,点A的坐标为(-1,0),点B在第一、三象限的角平分线上运动,当线段AB最短时,点B的坐标为( )
| A. | (0,0) | B. | ($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$) | C. | (-$\frac{1}{2}$,-$\frac{1}{2}$) | D. | (-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$) |
19.无论x为任何实数,x2-4x+9的取值范围为( )
| A. | x2-4x+9>9 | B. | x2-4x+9≥18 | C. | x2-4x+9≥5 | D. | x2-4x+9≤5 |