题目内容
计算的结果是( ).
A. B. C. D.
(8分)如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF.当△ABC满足什么条件时,四边形ADCF是菱形?为什么?
图(1)是一个长2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )
如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE= °.
如图,点A在射线OX上,OA等于2cm,如果OA绕点O按逆时针方向旋转30°到OA′,那么点A′的位置可以用(2,30°)表示.若OB=3cm,且OA′⊥OB,则点B的位置可表示为( )
A.(3,90°) B.(3,120°) C.(5,120°) D.(3,110°)
(本题满分8分)为了了解我校九年级中考体育测试项目男女长跑(男1000米,女800米)的冬训成绩,组织体育组的老师从九年级十四个班级中随机抽取了部分学生进行测试(满分为8分),并根据测试收集的数据绘制了如下两幅不完整的统计图.根据上述信息,解答下列问题:
(1)本次随机抽取的学生人数为 人;
(2)将条形统计图补充完整,并求出扇形统计图中成绩为6分所对应的扇形的圆心角的度数;
(3)若我校九年级共有800名学生,估计九年级学生长跑成绩不低于7分的人数.
如图,在菱形ABCD中,已知菱形ABCD的周长是40,AC=12,则菱形ABCD的面积
为 .
(10分)如图所示,在矩形ABCD中,EF是BD的垂直平分线,BD=40米,EF=30 米,求四边形BEDF的面积.
将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为( )
A.1 B.2 C.2 D.12