题目内容

18.解下列方程:
(1)$\frac{2}{2-x}$+$\frac{4x}{{x}^{2}-4}$+$\frac{1}{x+2}$=1
(2)$\left\{\begin{array}{l}{\frac{1}{x}+\frac{1}{y}=\frac{7}{12}}\\{\frac{1}{xy}=\frac{1}{12}}\end{array}\right.$.

分析 (1)分式方程两边乘以最简公分母(x+2)(x-2)转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;
(2)设$\frac{1}{x}$=a,$\frac{1}{y}$=b,方程组变形后求出解即可.

解答 解:(1)去分母得:-2(x+2)+4x+x-2=x2-4,
整理得:x2-3x+2=0,即(x-1)(x-2)=0,
解得:x=1或x=2,
经检验x=2是增根,分式方程的解为x=1;
(2)设$\frac{1}{x}$=a,$\frac{1}{y}$=b,方程组变形为$\left\{\begin{array}{l}{a+b=\frac{7}{12}①}\\{ab=\frac{1}{12}②}\end{array}\right.$,
由①得:a=$\frac{7}{12}$-b③,
把③代入②得:($\frac{7}{12}$-b)b=$\frac{1}{12}$,即12b2-7b+1=0,
分解因式得:(-3b+1)(-4b+1)=0,
解得:b=$\frac{1}{3}$或$\frac{1}{4}$,
把b=$\frac{1}{3}$代入③得:a=$\frac{1}{4}$;把b=$\frac{1}{3}$代入③得:a=$\frac{1}{4}$,
∴$\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$或$\left\{\begin{array}{l}{x=3}\\{y=4}\end{array}\right.$,
经检验$\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$,$\left\{\begin{array}{l}{x=3}\\{y=4}\end{array}\right.$都为分式方程的解.

点评 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网