题目内容

3.如图,已知△ABC中,AB=BC,点E是AC边上的中点,过点E作DE∥BC,求证:△BDE是等腰三角形.

分析 根据等腰三角形的性质得到∠ABE=∠CBE,根据平行线的性质得到∠DEB=∠CBE,等量代换得到∠DEB=∠ABE,即可得到结论.

解答 证明:∵△ABC中,AB=BC,点E是AC边上的中点,
∴∠ABE=∠CBE,
∵DE∥BC,
∴∠DEB=∠CBE,
∴∠DEB=∠ABE,
∴△BDE是等腰三角形.

点评 本题考查了等腰三角形的判定及性质和平行线的性质;进行角的等量代换是正确解答本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网