题目内容

10.2016年跳水世界杯,于2月19日至24日在巴西里约举行,中国队取得佳绩.优秀成绩的取得离不开艰辛的训练,某跳水运动员在进行跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线,已知跳板AB长为2米,跳板距水面CD的高BC为3米,训练时跳水曲线在离起跳点水平距离1米时达到距水面最大高度k米,现以CD为横轴,BC为纵轴建立直角坐标系.
(1)当k=4时,求这条抛物线的解析式;
(2)当k=4时,求运动员落水点与点C的距离;
(3)图中CE=$\frac{19}{4}$米,CF=$\frac{21}{4}$米,若跳水运动员在区域EF内(含点E,F)入水时才能达到训练要求,求k的取值范围.

分析 (1)根据抛物线顶点坐标M(3,4),可设抛物线解析为:y=a(x-3)2+4,将点A(2,3)代入可得;
(2)在(1)中函数解析式中令y=0,求出x即可;
(3)若跳水运动员在区域EF内(含点E,F)入水达到训练要求,则在函数y=a(x-3)2+k中当x=$\frac{19}{4}$时y>0,且x=$\frac{21}{4}$时y<0,解不等式即可得.

解答 解:(1)如图所示:

根据题意,可得抛物线顶点坐标M(3,4),A(2,3)
设抛物线解析为:y=a(x-3)2+4,
则3=a(2-3)2+4,
解得:a=-1,
故抛物线解析式为:y=-(x-3)2+4;
(2)由题意可得:当y=0,则0=-(x-3)2+4,
解得:x1=1,x2=5,
故抛物线与x轴交点为:(5,0),
当k=4时,求运动员落水点与点C的距离为5米;
(3)根据题意,抛物线解析式为:y=a(x-3)2+k,
将点A(2,3)代入可得:a+k=3,即a=3-k
若跳水运动员在区域EF内(含点E,F)入水,
则当x=$\frac{19}{4}$时,y=$\frac{49}{16}$a+k≥0,即$\frac{49}{16}$(3-k)+k≥0,
解得:k≤$\frac{49}{11}$,
当x=$\frac{21}{4}$时,y=$\frac{81}{16}$a+k≤0,即$\frac{81}{16}$(3-k)+k≤0,
解得:k≥$\frac{243}{65}$,
故$\frac{243}{65}$≤k≤$\frac{49}{11}$.

点评 此题主要考查了二次函数的应用,根据题意利用顶点式求出二次函数解析式是解题基础,判断入水的位置对应的抛物线上点的坐标特点是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网