题目内容
5.不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为$\frac{1}{2}$.(1)求袋中黄球的个数;
(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.
分析 (1)袋中黄球的个数为x个,根据概率公式得到$\frac{2}{2+1+x}$=$\frac{1}{2}$,然后利用比例性质求出x即可;、
(2)先画树状图展示所有12种等可能的结果数,再找出两次摸出的都是红球的结果数,然后根据概率公式计算即可.
解答 解:(1)设袋中黄球的个数为x个,
根据题意得$\frac{2}{2+1+x}$=$\frac{1}{2}$,
解得x=1,
所以袋中黄球的个数为1个;
(2)画树状图为:![]()
共有12种等可能的结果数,其中两次摸出的都是红球的结果数为2,
所以两次摸出的都是红球的概率=$\frac{2}{12}$=$\frac{1}{6}$.
点评 本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
练习册系列答案
相关题目
16.
星期天8:00∽8:30,燃气公司给平安加气站的储气罐注入天然气,注完气之后,一位工作人员以每车20米3的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y(米3)与时间x(小时)的函数关系如图所示.
(1)8:00~8:30,燃气公司向储气罐注入了8000米3的天然气;
(2)当x≥8.5时,求储气罐中的储气量y(米3)与时间x(小时)的函数关系式y=-1000x+18500;
(3)正在排队等候的20辆车加完气后,储气罐内还有天然气9600米3;
(4)这第20辆车在当天9:00之前不能加完气;
其中说法正确的有( )
(1)8:00~8:30,燃气公司向储气罐注入了8000米3的天然气;
(2)当x≥8.5时,求储气罐中的储气量y(米3)与时间x(小时)的函数关系式y=-1000x+18500;
(3)正在排队等候的20辆车加完气后,储气罐内还有天然气9600米3;
(4)这第20辆车在当天9:00之前不能加完气;
其中说法正确的有( )
| A. | (1)(2) | B. | (2)(3) | C. | (1)(2)(3) | D. | (1)(2)(3)(4) |
19.已知一个数的绝对值等于2,那么这个数与2的和为( )
| A. | 4 | B. | 4或-4 | C. | 0 | D. | 4或0 |