题目内容

7.如图,在△ABC中,∠B=30°,∠C=70°,AD平分∠BAC,交BC于F,DE⊥BC于E,则∠D=20°.

分析 根据三角形内角和定理易求∠BAC的度数,因为AD平分∠BAC,进而可求出∠CAF的度数,再根据三角形内角和定理可求出∠AFC的度数,由对顶角相等和垂直的性质即可求出∠D的度数.

解答 解:∵∠B=30°,∠C=70°,
∴∠BAC=80°
∵AD平分∠BAC,
∴∠FAC=40°,
∴∠AFC=180°-70°-40°=70°,
∴∠EFD=70°,
∵DE⊥BC于E,
∴∠DEF=90°,
∴∠D=90°70°=20°,
故答案为20.

点评 本题考查了三角形内角和定理:三角形内角和是180°,是基础题,准确识别图形是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网