题目内容

在△ABC中,点I是内心,若∠A=40°,则∠BIC的度数为
 
考点:三角形的内切圆与内心
专题:
分析:根据三角形内角和定理即可求得∠IBC+∠ICB的度数,然后根据内心的定义即可求得∠IBC+∠ICB,然后根据三角形内角和定理即可求解.
解答:解:∵∠A=40°,
∴∠ABC+∠ACB=180°-40°=140°.
∵点I是△ABC的内心,
∴∠IBC=
1
2
∠ABC,∠ICB=
1
2
∠ACB,
∴∠IBC+∠ICB=
1
2
(∠ABC+∠ACB)=70°,
∴∠BIC=180°-(∠IBC+∠ICB)=110°.
故答案是:110°.
点评:此题主要考查了三角形的内心的计算,正确理解∠IBC+∠ICB=
1
2
(∠ABC+∠ACB)是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网