题目内容
15.解方程组:$\left\{\begin{array}{l}{4{x}^{2}+4xy+{y}^{2}=9}\\{{x}^{2}+5xy-6{y}^{2}=0}\end{array}\right.$.分析 原方程组变形可得$\left\{\begin{array}{l}{{(2x+y)}^{2}=9}&{①}\\{(x-y)(x+5y)=0}&{②}\end{array}\right.$,由②知x=y或x=-5y,据此分两种情况分别求解可得.
解答 解:原方程组变形可得$\left\{\begin{array}{l}{{(2x+y)}^{2}=9}&{①}\\{(x-y)(x+5y)=0}&{②}\end{array}\right.$,
由②得x-y=0或x+5y=0,
即x=y或x=-5y,
当x=y时,代入①,得:9x2=9,
解得x=1或x=-1,
此时方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$、$\left\{\begin{array}{l}{x=-1}\\{y=-1}\end{array}\right.$;
当x=-5y时,代入②,得:81y2=9,
解得:y=$\frac{1}{3}$或y=-$\frac{1}{3}$,
此时方程组的解为$\left\{\begin{array}{l}{x=-\frac{5}{3}}\\{y=\frac{1}{3}}\end{array}\right.$、$\left\{\begin{array}{l}{x=\frac{5}{3}}\\{y=-\frac{1}{3}}\end{array}\right.$;
综上,方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$或$\left\{\begin{array}{l}{x=-1}\\{y=-1}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{5}{3}}\\{y=\frac{1}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{5}{3}}\\{y=-\frac{1}{3}}\end{array}\right.$.
点评 本题主要考查高次方程的求解,熟练掌握化归思想的运用是解题的关键.
| A. | -3a<-3b | B. | a3<b3 | C. | a2<b2 | D. | c-a<c-b |