题目内容

19.已知关于x的一元二次方程x2+2(a-1)x+(a2-a)=0,其中a<0.
(1)求证:此方程有两个不相等的实数根.
(2)若等腰三角形ABC的一腰AB长为6,另两边AC,BC的长分别是这个方程的两个不相等的实数根,求等腰三角形ABC的周长.

分析 (1)先计算判别式的值得△,然后根据判别式的意义得到结论;
(2)先利用解方程得方程的解,分别让一个根为6,求得a的数值,得出方程的根,利用三角形的三边关系判定求得△ABC的周长.

解答 解:(1)△=[2(a-1)]2-4(a2-a)=-4a+4,
∵a<0,
∴△>0,
∴方程有两个不相等的实数根;

(2)x2+2(a-1)x+(a2-a)=0,
解得:x1=1-a+$\sqrt{1-a}$,x2=1-a-$\sqrt{1-a}$,
∵等腰△ABC的一腰AB长为6,另两边AC,BC的长分别是这两个方程两个不相等的实数根,
∴当1-a+$\sqrt{1-a}$=6,解得a=-3或-8,
则1-a-$\sqrt{1-a}$=2,
∴等腰△ABC的周长=6+6+2=14;

点评 此题考查一元二次方程的实际运用,掌握解方程的方法,根的判别式,根与系数的关系以及等腰三角形的性质是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网