题目内容
考点:角平分线的性质,全等三角形的判定与性质,线段垂直平分线的性质
专题:证明题
分析:先根据E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA得出△ODE≌△OCE,可得出OD=OC,DE=CE,OE=OE,可得出△DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD的垂直平分线.
解答:证明:∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,
∴DE=CE,OE=OE,
在Rt△ODE与Rt△OCE中,
,
∴Rt△ODE≌Rt△OCE(HL),
∴OD=OC,
∴△DOC是等腰三角形,
∵OE是∠AOB的平分线,
∴OE是CD的垂直平分线.
∴DE=CE,OE=OE,
在Rt△ODE与Rt△OCE中,
|
∴Rt△ODE≌Rt△OCE(HL),
∴OD=OC,
∴△DOC是等腰三角形,
∵OE是∠AOB的平分线,
∴OE是CD的垂直平分线.
点评:本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.
练习册系列答案
相关题目