题目内容

如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E式垂足,连接CD,若BD=1,则AD的长是(  )
A、
3
B、2
C、4
D、1
考点:线段垂直平分线的性质,含30度角的直角三角形
专题:
分析:先根据三角形内角和定理求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,由直角三角形的性质可得出CD的长.
解答:解:∵∠A=30°,∠B=90°,
∴∠ACB=180°-30°-90°=60°,
∵DE垂直平分斜边AC,
∴AD=CD,
∴∠A=∠ACD=30°,
∴∠DCB=60°-30°=30°,
∵BD=1,
∴CD=AD=2.
故选B.
点评:本题考查的是线段垂直平分线的性质,含30度角的直角三角形,等腰三角形的性质,三角形的内角和定理等知识点的应用,主要考查学生运用这些定理进行推理的能力,题目综合性比较强,难度适中.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网