题目内容
3.用代入法解下列方程组:(1)$\left\{\begin{array}{l}{x=3y}\\{x+4y=14}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x-3=2y}\\{2x+1=3y}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{3x-5y=6}\\{x+4y=-15}\end{array}\right.$;
(4)$\left\{\begin{array}{l}{2x-y=5}\\{3x+4y=2}\end{array}\right.$.
分析 各方程组变形后,利用代入消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{x=3y①}\\{x+4y=14②}\end{array}\right.$,
把①代入②得:3y+4y=14,即y=2,
把y=2代入①得:x=6,
则方程组的解为$\left\{\begin{array}{l}{x=6}\\{y=2}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x-3=2y①}\\{2x+1=3y②}\end{array}\right.$,
由①得:x=2y+3③,
把③代入②得:4y+6+1=3y,即y=-7,
把y=-7代入③得:x=-11,
则方程组的解为$\left\{\begin{array}{l}{x=-11}\\{y=-7}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{3x-5y=6①}\\{x+4y=-15②}\end{array}\right.$,
由②得:x=-4y-15③,
把③代入①得:-12y-45-5y=6,即y=-3,
把y=-3代入③得:x=-3,
则方程组的解为$\left\{\begin{array}{l}{x=-3}\\{y=-3}\end{array}\right.$;
(4)$\left\{\begin{array}{l}{2x-y=5①}\\{3x+4y=2②}\end{array}\right.$,
由①得:y=2x-5③,
把③代入②得:3x+8x-20=2,即x=2,
把x=2代入③得:y=-1,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
| A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |
| A. | B. | C. | D. |
| A. | -3 | B. | 1 | C. | 0 | D. | 2 |
| A. | (-2)2 | B. | -$\sqrt{2}$ | C. | $\frac{1}{2}$ | D. | -(-1) |