题目内容

20.如图,在△ABC中,DF∥EQ∥BC,且AD=DE=EB,△ABC被DF、EQ分成三部分,且三部分面积分别为S1,S2,S3,则S1:S2:S3=1:3:5.

分析 根据DF∥EQ∥BC,判断出△ADF∽△AEG∽△ABC,再根据相似三角形的面积比等于相似比的平方解答即可.

解答 解:∵DF∥EG∥BC,
∴△ADF∽△AEG∽△ABC,
又∵AD=DE=EB,
∴三个三角形的相似比是1:2:3,
∴面积的比是1:4:9,
设△ADF的面积是a,则△AEG与△ABC的面积分别是4a,9a,
∴S2=3a,S3=5a,则Sl:S2:S3=1:3:5.
故答案为:1:3:5.

点评 本题考查了相似三角形的判定和性质,熟练掌握相似三角形的面积的比等于相似比的平方是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网