题目内容
【题目】已知:在菱形ABCD中,E,F是BD上的两点,且AE∥CF.
求证:四边形AECF是菱形.
![]()
【答案】见解析
【解析】
由菱形的性质可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可证△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四边形的判定和菱形的判定可得四边形AECF是菱形.
证明:∵四边形ABCD是菱形
∴AB∥CD,AB=CD,∠ADF=∠CDF,
∵AB=CD,∠ADF=∠CDF,DF=DF
∴△ADF≌△CDF(SAS)
∴AF=CF,
∵AB∥CD,AE∥CF
∴∠ABE=∠CDF,∠AEF=∠CFE
∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD
∴△ABE≌△CDF(AAS)
∴AE=CF,且AE∥CF
∴四边形AECF是平行四边形
又∵AF=CF,
∴四边形AECF是菱形
练习册系列答案
相关题目