ÌâÄ¿ÄÚÈÝ
12£®£¨1£©AC=6cm£»
£¨2£©ÔÚµãA¡¢B·Ö±ðÔÚxÖá¡¢yÖáµÄÕý°ëÖáÉÏ»¬¶¯µÄ¹ý³ÌÖУ¬µ±¡÷ACB¡Õ¡÷AOBʱ£¬ÇóÖ±½Ç¶¥µãCµÄ×ø±ê£»
£¨3£©µ±µãB´Ó×ø±êÔµãÑØxÖáÏòÓÒ·½Ïò»¬¶¯µÄ¹ý³ÌÖУ¬Ö±½Ç¶¥µãCÒ²ËæÖ®Ô˶¯£¬Ö±µ½µãAÎÞÏÞ½Ó½ü×ø±êԵ㣨Óë×ø±êÔµã²»ÖØºÏ£©Ê±£¬Ô˶¯Í£Ö¹£¬ÈôµãCÔ˶¯µÄ·³Ì³¤Îªl£¬ÇólµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©ÔÚÖ±½Ç¡÷ABCÖУ¬ÀûÓÃÈý½Çº¯ÊýÇóµÃACµÄ³¤£»
£¨2£©ÀûÓÃÈý½Çº¯ÊýÇóµÃBCµÄ³¤£¬È»ºó¸ù¾ÝÈ«µÈÈý½ÇÐεÄÐÔÖÊ£¬ÇóµÃOBµÄ³¤£¬×÷CD¡ÍxÖáÓÚµãD£¬ÔÚÖ±½Ç¡÷BCDÖУ¬ÀûÓÃÈý½Çº¯ÊýÇóµÃCDºÍBD£¬ÔòCµÄ×ø±ê¼´¿ÉÇóµÃ£»
£¨3£©Ð±±ßABµÄÖеãµÄ·¾¶ÊÇÒÔOΪԲÐÄ£¬ÒÔ$\frac{1}{2}$ABΪ°ë¾¶µÄ»¡£¬CÒ²ÔÚÕâ¸ö»¡ËùÔÚµÄÔ²ÉÏ£¬ÓëABµÄÖеã·¾¶ÏàµÈ£¬¸ù¾Ý»¡³¤¹«Ê½¼´¿ÉÇó½â£®
½â´ð ½â£º£¨1£©ÔÚÖ±½Ç¡÷ABCÖУ¬AC=AB•sin¡ÏCBA=12¡Á$\frac{1}{2}$=6£¨cm£©£®
¹Ê´ð°¸ÊÇ£º6£»
£¨2£©ÔÚÖ±½Ç¡÷ABCÖУ¬BC=AB•cos¡ÏCBA=12¡Á$\frac{\sqrt{3}}{2}$=6$\sqrt{3}$£¨cm£©£¬![]()
¢Ù¡ßACB¡Õ¡÷AOB£¬
¡àOB=BC=6$\sqrt{3}$£¬¡ÏABO=¡ÏCBA=30¡ã£¬
¡à¡ÏCBD=60¡ã£¬
×÷CD¡ÍxÖáÓÚµãD£®
ÔÚÖ±½Ç¡÷BCDÖУ¬BD=BC•cos¡ÏCBD=6$\sqrt{3}$¡Á$\frac{1}{2}$=3$\sqrt{3}$£¨cm£©£®
CD=BC•sin¡ÏCBD=6$\sqrt{3}$¡Á$\frac{\sqrt{3}}{2}$=9£®
¡àOD=OB-BD=6$\sqrt{3}$-3$\sqrt{3}$=3$\sqrt{3}$£®![]()
¡àCµÄ×ø±êÊÇ£¨3$\sqrt{3}$£¬9£©£®
¢ÚÈçͼËùʾ£¬¡ßACB¡Õ¡÷AOB£¬
BC=6$\sqrt{3}$£¬AC=6£¬
¡àC£¨6£¬6$\sqrt{3}$£©£®
£¨3£©ÒòΪÊÇRT¡÷ABC£¬ËùÒÔ¿ÉÒÔ°ÉABÖе㿴³ÉÔ²ÐÄ£¬A£¬B£¬C£¬Èýµã·Ö±ðÔÚÔ²ÉÏ£¬CµãµÄÔ˶¯Â·³Ì¼´ABÖеãµÄÔ˶¯Â·³Ì£®
ABµÄÖеãÔ˶¯Â·ÏßÊÇÒÔOΪԲÐÄ£¬ÒÔ$\frac{1}{2}$AB=$\frac{1}{2}$¡Á12=6£¨cm£©Îª°ë¾¶µÄ»¡£¬»¡µÄÔ²ÐĽǽӽü90¡ã£¬
Ôò»¡³¤ÊÇ£º$\frac{90¦Ð¡Á6}{180}$=3¦Ð£®
¡àlµÄ·¶Î§ÊÇ£º0¡Ül£¼3¦Ð£®![]()
µãÆÀ ±¾ÌâÊÇÒ»´Îº¯ÊýÓëÈý½Çº¯ÊýÒÔ¼°È«µÈÈý½ÇÐεÄÐÔÖʵÄ×ÛºÏÌ⣬Ö÷Òª¿¼²éÁËͼÐÎÕÛµþµÄÐÔÖÊ£¬ÕýÈ·È·¶¨CµãÔ˶¯µÄ·¾¶Êǹؼü£®
| A£® | £¨a+b£©2 | B£® | £¨a-b£©2 | C£® | 2ab | D£® | ab |
| A£® | 2 | B£® | 3 | C£® | 4 | D£® | $\frac{1}{4}$ |