题目内容


如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=(     )

A.118°  B.119°  C.120°  D.121°


C【考点】三角形内角和定理.

【分析】由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.

【解答】解:∵∠A=60°,

∴∠ABC+∠ACB=120°,

∵BE,CD是∠B、∠C的平分线,

∴∠CBE=∠ABC,∠BCD=

∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,

∴∠BFC=180°﹣60°=120°,

故选:C.

【点评】本题主要考查了三角形内角和定理和角平分线的性质,综合运用三角形内角和定理和角平分线的性质是解答此题的关键.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网