题目内容

2.如图,已知?ABCD的对角线交于O点,M为OD的中点,过M的直线分别交AD、CD于P、Q.交BA、BC的延长线于E、F.求证:PE+QF=2PQ.

分析 先由MP∥OA,DM=MO,得出DP=PA.再由平行四边形的性质得出∠EAP=∠QDP,∠AEP=∠DQP,然后利用AAS证明△APE≌△DPQ,得出PE=PQ.同理,QF=PQ,即可得出PE+QF=2PQ.

解答 证明:∵MP∥OA,DM=MO,
∴DP=PA.
在?ABCD中,∵AB∥CD,
∴∠EAP=∠QDP,∠AEP=∠DQP.
在△APE与△DPQ中,$\left\{\begin{array}{l}{∠EAP=∠QDP}&{\;}\\{∠AEP=∠DQP}&{\;}\\{PA=PD}&{\;}\end{array}\right.$,
∴△APE≌△DPQ(AAS),
∴PE=PQ.
同理,QF=PQ,
∴PE+QF=2PQ.

点评 本题考查了平行四边形的性质,全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网