题目内容

12.如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是(  )
A.25B.33C.34D.50

分析 由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n-1)=3n+1个,根据题意得3n+1=100,求得n的值即可.

解答 解:∵第一次操作后,三角形共有4个;
第二次操作后,三角形共有4+3=7个;
第三次操作后,三角形共有4+3+3=10个;

∴第n次操作后,三角形共有4+3(n-1)=3n+1个;
当3n+1=100时,解得:n=33,
故选:B.

点评 此题主要考查了图形的变化类,根据已知得出第n次操作后,三角形的个数为3n+1是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网