题目内容

6.已知:如图,在⊙O中,弦CD垂直于直径AB,垂足为点E,如果∠BAD=30°,且BE=2,求弦CD的长.

分析 连接OD,设⊙O的半径为r,则OE=r-2,再根据圆周角定理得出∠DOE=60°,由直角三角形的性质可知OD=2OE,由此可得出r的长,在Rt△OED中根据勾股定理求出DE的长,进而可得出结论.

解答 解:连接OD,设⊙O的半径为r,则OE=r-2,
∵∠BAD=30°,
∴∠DOE=60°,
∵CD⊥AB,
∴CD=2DE,∠ODE=30°,
∴OD=2OE,即r=2(r-2),解得r=4;
∴OE=4-2=2,
∴DE=$\sqrt{O{D}^{2}-O{E}^{2}}$=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
∴CD=2DE=4$\sqrt{3}$.

点评 本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网