题目内容
8.如果|x-y|=y-x,且x2=4,|y|=3,则x+y=5或1.分析 先根据平方根和绝对值,确定x,y的值,再根据|x-y|=y-x,进一步得到$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=3}\end{array}\right.$,即可解答.
解答 解:∵x2=4,|y|=3,
∴x=2或-2,y=3或-3,
∵|x-y|=y-x,
∴$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=3}\end{array}\right.$
∴x+y=5或1,
故答案为:5或1.
点评 本题考查了绝对值,解决本题的关键是熟记绝对值的性质.
练习册系列答案
相关题目