题目内容
10.若|a-1|与(b+2)2互为相反数,求:(a+b)2008+a2007的值.分析 根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.
解答 解:∵|a-1|与(b+2)2互为相反数,
∴|a-1|+(b+2)2=0,
∴a-1=0,b+2=0,
解得a=1,b=-2,
所以,(a+b)2008+a2007=(1-2)2008+12007=1+1=2.
点评 本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.
练习册系列答案
相关题目
20.下列方程中,关于x的一元二次方程是( )
| A. | x2+3x-5 | B. | 3x3-2x+5=0 | C. | (x-1)(x+2)=1 | D. | 3x2-2xy-5y2=0 |