题目内容
计算:
(1)
•(
)2÷
;
(2)a2b3•(ab2)-2;
(3)
+
;
(4)(
)3÷
+
.
(1)
| 2m |
| 3n |
| 3n |
| p |
| mn |
| p2 |
(2)a2b3•(ab2)-2;
(3)
| x2-16 |
| x2+8x+16 |
| x |
| x-4 |
(4)(
| pq |
| 2r |
| 2p |
| r2 |
| 1 |
| 2q |
考点:分式的混合运算
专题:计算题
分析:(1)先算乘方运算,再把除法运算化为乘法运算,然后约分即可;
(2)先算乘方运算,再进行同底数幂的乘法运算,然后把负整数整数幂化为正整数整数幂;
(3)先把分子分母因式分解,约分得到原式=
+
,然后通分即可;
(4)先算乘方运算,再把除法运算化为乘法运算,然后约分后进行通分.
(2)先算乘方运算,再进行同底数幂的乘法运算,然后把负整数整数幂化为正整数整数幂;
(3)先把分子分母因式分解,约分得到原式=
| x-4 |
| x+4 |
| x |
| x-4 |
(4)先算乘方运算,再把除法运算化为乘法运算,然后约分后进行通分.
解答:解:(1)原式=
•
•
=6;
(2)原式=a2b3•a-2b-4
=a2-2b3-4
=
;
(3)原式=
+
=
+
=
=
;
(4)原式=
•
+
=
+
=
.
| 2m |
| 3n |
| 9n2 |
| p2 |
| p2 |
| mn |
=6;
(2)原式=a2b3•a-2b-4
=a2-2b3-4
=
| 1 |
| b |
(3)原式=
| (x+4)(x-4) |
| (x+4)2 |
| x |
| x-4 |
=
| x-4 |
| x+4 |
| x |
| x-4 |
=
| (x-4)2+x(x+4) |
| (x+4)(x-4) |
=
| 2x2-4x+16 |
| x2-16 |
(4)原式=
| p3q3 |
| 8r3 |
| r2 |
| 2p |
| 1 |
| 2q |
=
| p2q3 |
| 16r |
| 1 |
| 2q |
=
| p2q4+8r |
| 16rq |
点评:本题考查了分式的混合运算:分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.
练习册系列答案
相关题目