题目内容
先化简,再求值: ,其中.
如图,矩形ABCD的周长为20cm,两条对角线相交于O点,过点O作AC的垂线EF,分别交AD、BC于E、F点,连结CE,则△CDE的周长为 cm.
方程x2-2x=0的根是( )
A. x1=x2=0 B. x1=x2=2 C. x1=0,x2=2 D. x1=0,x2=-2
如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2 .若设道路的宽为 ,则下面所列方程正确的是( )
A. (32-x)(20-x)=32×20-570 B. 32x+2×20x=32×20-570
C. 32x+2×20x-2x2=570 D. (32-2x)(20-x)= 570
对于0,1以及真分数p,q,r,若p<q<r,我们称q为p和r的中间分数.为了帮助我们找中间分数,制作了下表:
两个不等的正分数有无数多个中间分数.例如:上表中第③行中的3个分数、、,有,所以为和的一个中间分数,在表中还可以找到和的中间分数, , , .把这个表一直写下去,可以找到和更多的中间分数.
(1)按上表的排列规律,完成下面的填空:
①上表中括号内应填的数为 ;
②如果把上面的表一直写下去,那么表中第一个出现的和的中间分数是 ;
(2)写出分数和(a、b、c、d均为正整数, , )的一个中间分数(用含a、b、c、d的式子表示),并证明;
(3)若与(m、n、s、 t均为正整数)都是和的中间分数,则的最小值为 .
如图,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分线交于O点,过点O作BC的平行线交AB于M点,交AC于N点,则△AMN的周长为__________.
某小区有一块边长为a的正方形场地,规划修建两条宽为b的绿化带.方案一如图甲所示,绿化带面积为;方案二如图乙所示,绿化带面积为.设,下列选项中正确的是( )
甲 乙
A. B. C. D.
如图,A,B,C,D是同一条直线上的点,AC=BD,AE∥DF,∠1=∠2.求证:BE = CF.
解方程,去分母正确的是( )
A. B.
C. D.