题目内容

3.如图,在Rt△ABC中,∠ACB=90°,∠A=24°,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,旋转角为48°.

分析 根据直角三角形两锐角互余求出∠B,再根据旋转的性质可得BC=CD,然后根据等腰三角形两底角相等求出∠BCD,然后根据对应边BC、CD的夹角即为旋转角解答.

解答 解:∵∠ACB=90°,∠A=24°,
∴∠B=90°-24°=66°,
∵△ABC绕点C按顺时针方向旋转后得到△EDC,点D在AB边上,
∴BC=CD,
∠BCD=180°-66°×2=48°,
∴旋转角为48°.
故答案为:48.

点评 本题考查了旋转的性质,等腰三角形的性质,直角三角形两锐角互余的性质,熟记各性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网