题目内容

如图,两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起,∠DEA=∠ACB=90°,∠DAE=∠ABC=30°,E、A、C三点在一条直线上,连接BD,取BD中点M,连接ME、MC,试判断△EMC的形状,并说明理由.
考点:全等三角形的判定与性质,直角三角形斜边上的中线,等腰直角三角形
专题:证明题,压轴题,探究型
分析:△EMC的形状是等腰直角三角形,求出∠DAB=90°,AD=AB,推出AM⊥BD,AM=BM=DM,求出∠MBC=∠MAE,BM=AM,证△BCM≌△AEM,推出EM=CM,∠3=∠2,求出∠1+∠3=90°即可.
解答:解:△EMC的形状是等腰直角三角形,
理由是:
连接AM,
∵∠8=30°,∠9=60°,
∴∠DAB=180°-30°-60°=90°,
∵M为BD中点,AD=AB(已知两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起),
∴AM⊥BD(等腰三角形底边的高也平分底边)
AM=BM=DM(直角三角形斜边上中线等于斜边的一半)
∴∠5=∠6=
1
2
(180°-90°)=45°,∠4=∠BDA=45°,
∵∠7=30°,
∴∠MBC=45°+30°=75°,
同理∠MAE=75°=∠MBC,
在△BCM和△AEM中
BM=AM
∠MBC=∠MAE
BC=AE

∴△BCM≌△AEM(SAS),
∴EM=CM,∠3=∠2,
∵AM⊥BD,
∴∠1+∠2=90°,
∴∠1+∠3=90°,
∴△EMC是等腰直角三角形.
点评:本题考查了等腰直角三角形,全等三角形的性质和判定,直角三角形斜边上中线等知识点的运用,主要考查学生综合运用性质进行推理的能力,题目比较典型,但是有一定的难度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网