ÌâÄ¿ÄÚÈÝ
13£®¢ÙÈç¹ûADÊÇBC±ßÖÐÏߣ¬ÄÇôCEÊÇAB±ßÖÐÏߣ»
¢ÚAEµÄ³¤¶ÈΪ$\frac{c+a-b}{2}$£»
¢ÛBDµÄ³¤¶ÈΪ$\frac{b+a-c}{2}$£»
¢ÜÈô¡ÏBAC=90¡ã£¬¡÷ABCµÄÃæ»ýΪS£¬ÔòS=AE•BD£®
ÆäÖÐÕýÈ·µÄ½áÂÛÊǢڢۢܣ¨½«ÕýÈ·½áÂÛµÄÐòºÅ¶¼ÌîÉÏ£©
·ÖÎö ÓÉÖÐÏߵ͍Ò壬¿ÉµÃµ½AB=AC£¬µ«AB=ACʱδ±ØÓÐAC=BC£¬¿ÉÅжϢ٣»¡÷ABDÓë¡÷ACDµÄÖܳ¤ÏàµÈ£¬ÎÒÃǿɵóö£ºAB+BD=AC+CD£¬µÈʽµÄ×óÓÒ±ßÕýºÃÊÇÈý½ÇÐÎABCÖܳ¤µÄÒ»°ë£¬ÓÐAB£¬ACµÄÖµ£¬ÄÇô¾ÍÄÜÇó³öBDµÄ³¤ÁË£¬Í¬Àí¿ÉÇó³öAEµÄ³¤£¬¿ÉÅжϢڢۣ»°ÑAEºÍBD´úÈë¼ÆË㣬½áºÏ¹´¹É¶¨Àí¿ÉÇóµÃS£¬¿ÉÅжϢܣ»Ôò¿ÉµÃ³ö´ð°¸£®
½â´ð ½â£º
µ±ADÊÇBC±ßÖÐÏßʱ£¬ÔòBD=CD£¬
¡ß¡÷ABDÓë¡÷ACDµÄÖܳ¤ÏàµÈ£¬
¡àAB=AC£¬
µ«´Ëʱ£¬²»ÄܵóöAC=BC£¬¼´²»ÄܵóöCEÊÇABµÄÖÐÏߣ¬
¹Ê¢Ù²»ÕýÈ·£»
¡ß¡÷ABDÓë¡÷ACDµÄÖܳ¤ÏàµÈ£¬BC=a£¬AC=b£¬AB=c£¬
¡àAB+BD+AD=AC+CD+AD£¬
¡àAB+BD=AC+CD£¬
¡ßAB+BD+CD+AC=a+b+c£¬
¡àAB+BD=AC+CD=$\frac{a+b+c}{2}$£®
¡àBD=$\frac{a+b+c}{2}$-c=$\frac{a+b-c}{2}$£¬
ͬÀíAE=$\frac{a+c-b}{2}$£¬
¹Ê¢Ú¢Û¶¼ÕýÈ·£»
µ±¡ÏBAC=90¡ãʱ£¬Ôòb2+c2=a2£¬
¡àAE•BE=$\frac{a+c-b}{2}$¡Á$\frac{a+b-c}{2}$=$\frac{1}{4}$[a-£¨c-b£©][a-£¨c-b£©]=$\frac{1}{4}$[a2-£¨c-b£©2]=$\frac{1}{4}$[a2-£¨c2+b2-2bc£©]=$\frac{1}{4}$¡Á2bc=$\frac{1}{2}$bc=S£¬
¹Ê¢ÜÕýÈ·£»
×ÛÉÏ¿ÉÖªÕýÈ·µÄ½áÂۢڢۢܣ¬
¹Ê´ð°¸Îª£º¢Ú¢Û¢Ü£®
µãÆÀ ±¾ÌâΪÈý½ÇÐεÄ×ÛºÏÓ¦Óã¬Ö÷Òª¿¼²éÁËÈý½ÇÐθ÷±ßÖ®¼äµÄ¹ØÏµÎÊÌâ¼°Èý½ÇÐεÄÃæ»ý£¬ÔÚÁÐʽ×ÓµÄʱºòҪעÒâÕÒ³öµÈÁ¿¹ØÏµ£¬ÄѶÈÊÊÖУ®
| A£® | 1 | B£® | 2 | C£® | $\sqrt{2}$ | D£® | 3 |
| A£® | £¨1£¬4£© | B£® | £¨-4£¬1£© | C£® | £¨-1£¬-4£© | D£® | £¨4£¬-1£© |
¢Ù${£¨{-\frac{1}{2}}£©^{-3}}=-\frac{1}{8}$£¬¢Úa2+2a-1=£¨a-1£©2£¬¢Ûa8¡Âa8=1£¨a¡Ù0£©£¬¢Ü£¨a-b£©2=a2-b2£®
| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
| A£® | 35¡ã | B£® | 45¡ã | C£® | 55¡ã | D£® | 80¡ã |
| A£® | 2 | B£® | 3 | C£® | 4 | D£® | -2 |
| A£® | y=-£¨x-2£©2-1 | B£® | y=-£¨x-2£©2+1 | C£® | y=-£¨x+2£©2+1 | D£® | y=-£¨x+2£©2-1 |