题目内容

【题目】阅读下列材料:

有这样一个问题:关于x 的一元二次方程a x2+bx+c=0(a0)有两个不相等的且非零的实数根.探究a,b,c满足的条件.

小明根据学习函数的经验,认为可以从二次函数的角度看一元二次方程,下面是小明的探究过程:

①设一元二次方程ax2+bx+c=0(a0)对应的二次函数为y=ax2+bx+c(a0);

②借助二次函数图象,可以得到相应的一元二次中a,b,c满足的条件,列表如下:

方程根的几何意义:请将(2)补充完整

方程两根的情况

对应的二次函数的大致图象

a,b,c满足的条件

方程有两个

不相等的负实根

_____

方程有两个

不相等的正实根

_____

_____

(1)参考小明的做法,把上述表格补充完整;

(2)若一元二次方程mx2﹣(2m+3)x﹣4m=0有一个负实根,一个正实根,且负实根大于﹣1,求实数m的取值范围.

【答案】 方程有一个负实根,一个正实根,

【解析】分析:1)由二次函数与一元二次方程的关系以及二次函数与系数的关系容易得出答案

2)根据题意得出关于m的不等式组解不等式组即可.

详解:(1)补全表格如下

2)设一元二次方程mx2﹣(2m+3x4m=0对应的二次函数为y=mx2﹣(2m+3x4m∵一元二次方程mx2+2m3x4=0有一个负实根一个正实根且负实根大于﹣1∴分两种情况讨论

①当m0x=﹣1y0解得m20m2

②当m0x=﹣1y0解得m2(舍去),

m的取值范围是0m2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网