题目内容
【题目】阅读下列材料:
有这样一个问题:关于x 的一元二次方程a x2+bx+c=0(a>0)有两个不相等的且非零的实数根.探究a,b,c满足的条件.
小明根据学习函数的经验,认为可以从二次函数的角度看一元二次方程,下面是小明的探究过程:
①设一元二次方程ax2+bx+c=0(a>0)对应的二次函数为y=ax2+bx+c(a>0);
②借助二次函数图象,可以得到相应的一元二次中a,b,c满足的条件,列表如下:
方程根的几何意义:请将(2)补充完整
方程两根的情况 | 对应的二次函数的大致图象 | a,b,c满足的条件 |
方程有两个 不相等的负实根 |
|
|
_____ |
|
|
方程有两个 不相等的正实根 | _____ | _____ |
(1)参考小明的做法,把上述表格补充完整;
(2)若一元二次方程mx2﹣(2m+3)x﹣4m=0有一个负实根,一个正实根,且负实根大于﹣1,求实数m的取值范围.
【答案】 方程有一个负实根,一个正实根,
![]()
【解析】分析:(1)由二次函数与一元二次方程的关系以及二次函数与系数的关系容易得出答案;
(2)根据题意得出关于m的不等式组,解不等式组即可.
详解:(1)补全表格如下:
![]()
(2)设一元二次方程mx2﹣(2m+3)x﹣4m=0对应的二次函数为:y=mx2﹣(2m+3)x﹣4m.∵一元二次方程mx2+(2m﹣3)x﹣4=0有一个负实根,一个正实根,且负实根大于﹣1,∴分两种情况讨论:
①当m>0时,x=﹣1时,y>0,解得:m<2,∴0<m<2.
②当m<0时,x=﹣1时,y<0,解得:m>2(舍去),
∴m的取值范围是0<m<2.
【题目】某校在一次广播操比赛中,初二 (1)班、初二(2)班、初二(3)班的各项得分如下:
服装统一 | 动作整齐 | 动作准确 | |
初二(1)班 |
|
|
|
初二(2)班 |
|
|
|
初二(3)班 |
|
|
|
(1)填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是________;在动作整齐方面三个班得分的众数是________;在动作准确方面最有优势的是________班.
(2)如果服装统一、动作整齐、动作准确三个方面的重要性之比为
,那么这三个班的排名顺序怎样?为什么?
(3)在(2)的条件下,你对三个班级中排名最靠后的班级有何建议?
【题目】.某酒厂生产A,B两种品牌的酒,平均每天两种酒共可售出600瓶,每种酒每瓶的成本和售价如表所示,设平均每天共获利y元,平均每天售出A种品牌的酒x瓶.
A | B | |
成本(元) | 50 | 35 |
售价(元) | 70 | 50 |
(1)请写出y关于x的函数关系式;
(2)如果该厂每天至少投入成本25000元,且售出的B种品牌的酒不少于全天销售总量的55%,那么共有几种销售方案?并求出每天至少获利多少元?