ÌâÄ¿ÄÚÈÝ
19£®£¨1£©µ±tΪºÎֵʱ£¬ËıßÐÎPQCMÊÇÆ½ÐÐËıßÐΣ¿
£¨2£©ÉèËıßÐÎPQCMµÄÃæ»ýΪy£¨cm2£©£¬ÇóyÓëtÖ®¼äµÄº¯Êý¹ØÏµÊ½£®
·ÖÎö £¨1£©¼ÙÉèPQCMΪƽÐÐËıßÐΣ¬¸ù¾ÝƽÐÐËıßÐεÄÐÔÖʵõ½¶Ô±ßƽÐУ¬½ø¶øµÃµ½AP=AM£¬Áгö¹ØÓÚtµÄ·½³Ì£¬Çó³ö·½³ÌµÄ½âµÃµ½Âú×ãÌâÒâtµÄÖµ£»
£¨2£©¸ù¾ÝPQ¡ÎAC¿ÉµÃ¡÷PBQ¡×¡÷ABC£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÎ×´±ØÈ»Ïàͬ¿ÉÖªÈý½ÇÐÎBPQҲΪµÈÑüÈý½ÇÐΣ¬¼´BP=PQ=t£¬ÔÙÓÉÖ¤µÃµÄÏàËÆÈý½ÇÐεõױȵ׵ÈÓڸ߱ȸߣ¬Óú¬tµÄ´úÊýʽ¾Í¿ÉÒÔ±íʾ³öBF£¬½ø¶øµÃµ½ÌÝÐεĸßPE=DF=8-t£¬ÓÖµãMµÄÔ˶¯ËٶȺÍʱ¼ä¿ÉÖªµãM×ß¹ýµÄ·³ÌAM=2t£¬ËùÒÔÌÝÐεÄϵ×CM=10-2t£®×îºó¸ù¾ÝÌÝÐεÄÃæ»ý¹«Ê½¼´¿ÉµÃµ½yÓëtµÄ¹ØÏµÊ½£®
½â´ð
½â£º£¨1£©¼ÙÉèËıßÐÎPQCMÊÇÆ½ÐÐËıßÐΣ¬ÔòPM¡ÎQC£¬
¡àAP£ºAB=AM£ºAC£¬
¡ßAB=AC£¬
¡àAP=AM£¬¼´10-t=2t£¬
½âµÃt=$\frac{10}{3}$£¬
¡àµ±t=$\frac{10}{3}$sʱ£¬ËıßÐÎPQCMÊÇÆ½ÐÐËıßÐΣ»
£¨2£©¡ßPQ¡ÎAC£¬
¡à¡÷PBQ¡×¡÷ABC£¬
¡à¡÷PBQΪµÈÑüÈý½ÇÐΣ¬PQ=PB=t£¬
¡à$\frac{BF}{BD}$=$\frac{BP}{BA}$£¬¼´$\frac{BF}{8}$=$\frac{t}{10}$£¬
½âµÃBF=$\frac{4}{5}$t£¬
¡àFD=BD-BF=8-$\frac{4}{5}$t£¬
ÓÖ¡ßMC=AC-AM=10-2t£¬
¡ày=$\frac{1}{2}$£¨PQ+MC£©•FD=$\frac{1}{2}$£¨t+10-2t£©£¨8-$\frac{4}{5}$t£©=$\frac{2}{5}$t2-8t+40£®
µãÆÀ ±¾Ìâ×ۺϿ¼²éÁËÆ½ÐÐËıßÐεÄÐÔÖÊ£¬Èý½ÇÐÎÏàËÆµÄÅж¨ÓëÐÔÖÊ£¬µÚ¶þÎʵĽâÌâ¹Ø¼üÊǸù¾ÝÏàËÆÈý½ÇÐεĸßÖ®±ÈµÈÓÚ¶ÔÓ¦±ßÖ®±ÈµÃ³ö±ÈÀý£¬½ø¶øÇó³ö¹ØÏµÊ½£®
| A£® | 1 | B£® | 1.5 | C£® | $\sqrt{2}$ | D£® | $\sqrt{3}$ |
| A£® | 16 | B£® | 24 | C£® | 30 | D£® | 36 |
| A£® | £¨3£¬0£© | B£® | £¨0£¬3£© | C£® | £¨1£¬4£© | D£® | £¨8£¬3£© |
| A£® | $\frac{1}{28}$ | B£® | $\frac{1}{29}$ | C£® | $\frac{1}{30}$ | D£® | $\frac{1}{31}$ |
| A£® | 4 | B£® | 8 | C£® | $\frac{21}{2}$ | D£® | $\frac{25}{2}$ |
| A£® | 63.2¡Á104 | B£® | 6.32¡Á105 | C£® | 0.632¡Á106 | D£® | 6.32¡Á106 |