ÌâÄ¿ÄÚÈÝ
8£®ÔÚ¾ØÐÎABCDÖУ¬AB=4£¬BC=8£¬¾¹ý¶Ô½ÇÏß½»µãOµÄÖ±ÏßEFÈÆµãOÐýת£¬·Ö±ð½»AD¡¢BCÓÚµãE¡¢F£¬Á¬½ÓAF¡¢CE£®£¨1£©Èçͼ£¨1£©£¬ÒÀ¾ÝÏÂÁÐÌõ¼þÔÚÆÕͨËıßÐΡ¢ÌÝÐΡ¢ÆÕͨƽÐÐËıßÐΡ¢¾ØÁâÐλòÕý·½ÐÎÖÐÑ¡ÔñÌî¿Õ£ºÐýת¹ý³ÌÖÐËıßÐÎAFCEʼÖÕΪƽÐÐËıßÐΣ»
µ±µãEΪADµÄÖеãʱËıßÐÎAFCEΪƽÐÐËıßÐΣ»
µ±EF¡ÍACʱËıßÐÎAFCEΪÁâÐΣ»
£¨2£©Èçͼ£¨1£©£¬µ±EF¡ÍACʱ£¬ÇóAFµÄ³¤£»
£¨3£©Èçͼ£¨2£©£¬ÔÚ£¨2£©µÄ»ù´¡ÉÏ£¬Èô¶¯µãP´ÓAµã³ö·¢£¬ÑØA¡úF¡úB¡úAÔ˶¯Ò»ÖÜÍ£Ö¹£¬ËÙ¶ÈΪÿÃë5ÀåÃ×£»Í¬Ê±µãQ´ÓCµã³ö·¢£¬ÑØC¡úD¡úE¡úCÔ˶¯Ò»ÖÜÍ£Ö¹£¬ËÙ¶ÈΪÿÃë4ÀåÃ×£¬ÔÚP¡¢QÔ˶¯¹ý³ÌÖУ¬µÚ¼¸Ãëʱ£¬ËıßÐÎAPCQÊÇÆ½ÐÐËıßÐΣ¿
·ÖÎö £¨1£©ÓÉAASÖ¤Ã÷¡÷AOE¡Õ¡÷COF£¬µÃ³öAE=CF£¬¼´¿ÉµÃ³öËıßÐÎAFCEΪƽÐÐËıßÐΣ»µ±µãEΪADµÄÖеãʱ£¬ËıßÐÎAFCEΪƽÐÐËıßÐΣ»µ±EF¡ÍACʱ£¬µÃ³öËıßÐÎAFCEΪÁâÐΣ®
£¨2£©¸ù¾Ý¹´¹É¶¨ÀíµÃ³ö·½³Ì£¬½â·½³Ì¼´¿ÉÇóAFµÄ³¤£»
£¨3£©·ÖÇé¿öÌÖÂÛ¿ÉÖª£¬PµãÔÚBFÉÏ£¬QµãÔÚEDÉÏʱ£¬²ÅÄܹ¹³ÉƽÐÐËıßÐΣ¬¸ù¾ÝƽÐÐËıßÐεÄÐÔÖÊÁгö·½³ÌÇó½â¼´¿É£®
½â´ð ½â£º£¨1£©µ±µãEΪADµÄÖеãʱ£¬ËıßÐÎAFCEΪƽÐÐËıßÐΣ»ÀíÓÉÈçÏ£º
¡ßËıßÐÎABCDÊǾØÐΣ¬
¡àAD¡ÎBC£¬OA=OC£¬
¡à¡ÏCAD=¡ÏACB£¬¡ÏAEF=¡ÏCFE£®
ÔÚ¡÷AOEºÍ¡÷COFÖУ¬$\left\{\begin{array}{l}{¡ÏCAD=¡ÏACB}&{\;}\\{¡ÏAEF=¡ÏCFE}&{\;}\\{OA=OC}&{\;}\end{array}\right.$£¬
¡à¡÷AOE¡Õ¡÷COF£¨AAS£©£¬
¡àAE=CF£®
ÓÖ¡ßAE¡ÎCF£¬
¡àËıßÐÎAFCEΪƽÐÐËıßÐΣ»
µ±µãEΪADµÄÖеãʱ£¬AE=CF£¬AE¡ÎCF£¬
ÔòËıßÐÎAFCEΪƽÐÐËıßÐΣ»
µ±EF¡ÍACʱ£¬ËıßÐÎAFCEΪÁâÐΣ¬ÀíÓÉÈçÏ£º
¡ßÓÉ¢ÙÖªËıßÐÎAFCEΪƽÐÐËıßÐΣ¬
¡ßEF¡ÍAC£¬
¡àËıßÐÎAFCEΪÁâÐΣ»
¹Ê´ð°¸Îª£ºÆ½ÐÐËıßÐΣ»Æ½ÐÐËıßÐΣ»ÁâÐΣ®
£¨2£©½â£ºÉèÁâÐεı߳¤AF=CF=xcm£¬ÔòBF=£¨8-x£©cm£¬
ÔÚRt¡÷ABFÖУ¬AB=4cm£¬
Óɹ´¹É¶¨ÀíµÃ£ºAB2+BF2=AF2£¬
¼´42+£¨8-x£©2=x2£¬
½âµÃ£ºx=5£¬
¡àAF=5£»
£¨3£©½â£º¸ù¾ÝÌâÒâµÃ£¬PµãAFÉÏʱ£¬QµãCDÉÏ£¬´ËʱA£¬C£¬P£¬QËĵ㲻¿ÉÄܹ¹³ÉƽÐÐËıßÐΣ»![]()
ͬÀíPµãABÉÏʱ£¬QµãDE»òCEÉÏ£¬Ò²²»Äܹ¹³ÉƽÐÐËıßÐΣ®
¡àÖ»Óе±PµãÔÚBFÉÏ£¬QµãÔÚEDÉÏʱ£¬²ÅÄܹ¹³ÉƽÐÐËıßÐΣ¬
¡àÒÔA£¬C£¬P£¬QËĵãΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐÎʱ£¬
PC=QA£¬
¡ßµãPµÄËÙ¶ÈΪÿÃë5cm£¬µãQµÄËÙ¶ÈΪÿÃë4cm£¬Ô˶¯Ê±¼äΪtÃ룬
¡àPC=5t£¬QA=12-4t£¬
¡à5t=12-4t£¬
½âµÃ£ºt=$\frac{4}{3}$£¬
¡àÒÔA£¬C£¬P£¬QËĵãΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐÎʱ£¬t=$\frac{4}{3}$Ã룮
µãÆÀ ±¾ÌâÊÇËıßÐÎ×ÛºÏÌâÄ¿£¬¿¼²éÁ˾ØÐεÄÐÔÖÊ¡¢ÁâÐεÄÅж¨¼°ÐÔÖÊ¡¢¹´¹É¶¨Àí¡¢Æ½ÐÐËıßÐεÄÅж¨¼°ÐÔÖʵÈ֪ʶ£»½â´ðʱ·ÖÎöÇå³þ¶¯µãÔÚ²»Í¬µÄλÖÃËù¹¹³ÉµÄͼÐÎÐÎ×´Êǽâ´ð±¾ÌâµÄ¹Ø¼ü£®
| A£® | $\sqrt{0.1}$ | B£® | $\sqrt{\frac{1}{2017}}$ | C£® | $\sqrt{48}$ | D£® | $\sqrt{{a}^{2}+{b}^{2}}$ |
| A£® | 12 cm | B£® | 10 cm | C£® | 8 cm | D£® | 6 cm |