题目内容
平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).
(A)5 (B)6
(C)8 (D)12
C.
如图,B,C是河岸边两点,A是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=60米,则点A到岸边BC的距离是______米.
4题图
等于( ).
A.7 B.
C.1 D.
如图,若□ABCD与□EBCF关于B,C所在直线对称,∠ABE=90°,则∠F=______.
已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.
如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.
6题图
如图,P为正方形ABCD的对角线上任一点,PE⊥AB于E,PF⊥BC于F,判断DP与EF的关系,并证明.
如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.
(1)求证:四边形AECD是菱形;
(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.
如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.
图1
(1)写出正比例函数和反比例函数的关系式;
(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;
(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.
图2