题目内容
如图,P为正方形ABCD的对角线上任一点,PE⊥AB于E,PF⊥BC于F,判断DP与EF的关系,并证明.
提示:连结BP.
平行四边形ABCD中,点E,F分别在BC,AD上,且AF=CE,求证:AE=CF.
平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).
(A)5 (B)6
(C)8 (D)12
若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.
如图,将一边长为12的正方形纸片ABCD的顶点A折叠至DC边上的点E,使DE=5,折痕为PQ,则PQ的长为( )
(A)12 (B)13
(C)14 (D)15
正方形的定义:有一组邻边______并且有一个角是______的平行四边形叫做正方形,因此正方形既是一个特殊的有一组邻边相等的______,又是一个特殊的有一个角是直角的______.
菱形的性质:菱形是特殊的平行四边形,它具有四边形和平行四边形的______:还有:菱形的四条边______;菱形的对角线______,并且每一条对角线平分______;菱形的面积等于__________________,它的对称轴是______________________________.
从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.