ÌâÄ¿ÄÚÈÝ
Èçͼ£¬¾ØÐÎABODµÄÁ½±ßOB£¬OD¶¼ÔÚ×ø±êÖáµÄÕý°ëÖáÉÏ£¬OD=3£¬ÁíÁ½±ßÓë·´±ÈÀýº¯Êýy=
| k |
| x |
¢Ù¸Ã·´±ÈÀýº¯ÊýµÄ½âÎöʽÊÇʲô£¿
¢Úµ±ËıßÐÎAEGFΪÕý·½ÐÎʱ£¬µãFµÄ×ø±êÊǶàÉÙ£¿
£¨1£©ÔĶÁºÏ×÷ѧϰÄÚÈÝ£¬Çë½â´ðÆäÖеÄÎÊÌ⣻
£¨2£©Ð¡ÁÁ½øÒ»²½Ñо¿ËıßÐÎAEGFµÄÌØÕ÷ºóÌá³öÎÊÌ⣺¡°µ±AE£¾EGʱ£¬¾ØÐÎAEGFÓë¾ØÐÎDOHEÄÜ·ñÈ«µÈ£¿ÄÜ·ñÏàËÆ£¿¡±
Õë¶ÔСÁÁÌá³öµÄÎÊÌ⣬ÇëÄãÅжÏÕâÁ½¸ö¾ØÐÎÄÜ·ñÈ«µÈ£¿Ö±½Óд³ö½áÂÛ¼´¿É£»ÕâÁ½¸ö¾ØÐÎÄÜ·ñÏàËÆ£¿ÈôÄÜÏàËÆ£¬Çó³öÏàËÆ±È£»Èô²»ÄÜÏàËÆ£¬ÊÔ˵Ã÷ÀíÓÉ£®
¿¼µã£º·´±ÈÀýº¯Êý×ÛºÏÌâ
רÌ⣺×ÛºÏÌâ
·ÖÎö£º£¨1£©¢ÙÏȸù¾Ý¾ØÐεÄÐÔÖʵõ½D£¨2£¬3£©£¬È»ºóÀûÓ÷´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¼ÆËã³ök=6£¬ÔòµÃµ½·´±ÈÀýº¯Êý½âÎöʽΪy=
£»
¢ÚÉèÕý·½ÐÎAEGFµÄ±ß³¤Îªa£¬ÔòAE=AF=a£¬¸ù¾Ý×ø±êÓëͼÐεĹØÏµµÃµ½B£¨2+a£¬0£©£©£¬A£¨2+a£¬3£©£¬ËùÒÔFµã×ø±êΪ£¨2+a£¬3-a£©£¬ÓÚÊÇÀûÓ÷´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷µÃ£¨2+a£©£¨3-a£©=6£¬È»ºó½âÒ»Ôª¶þ´Î·½³Ì¿ÉÈ·¶¨aµÄÖµ£¬´Ó¶øµÃµ½Fµã×ø±ê£»
£¨2£©µ±AE£¾EGʱ£¬¼ÙÉè¾ØÐÎAEGFÓë¾ØÐÎDOHEÈ«µÈ£¬ÔòAE=OD=3£¬AF=DE=2£¬ÔòµÃµ½Fµã×ø±êΪ£¨3£¬3£©£¬¸ù¾Ý·´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¿ÉÅжϵãF£¨3£¬3£©²»ÔÚ·´±ÈÀýº¯Êýy=
µÄͼÏóÉÏ£¬Óɴ˵õ½¾ØÐÎAEGFÓë¾ØÐÎDOHE²»ÄÜÈ«µÈ£»
µ±AE£¾EGʱ£¬Èô¾ØÐÎAEGFÓë¾ØÐÎDOHEÏàËÆ£¬¸ù¾ÝÏàËÆµÄÐÔÖʵÃAE£ºOD=AF£ºDE£¬¼´
=
=
£¬ÉèAE=3t£¬ÔòAF=2t£¬µÃµ½Fµã×ø±êΪ£¨2+3t£¬3-2t£©£¬
ÀûÓ÷´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷µÃ£¨2+3t£©£¨3-2t£©=6£¬½âµÃt1=0£¨ÉáÈ¥£©£¬t2=
£¬ÔòAE=3t=
£¬ÓÚÊǵõ½ÏàËÆ±È=
=
£®
| 6 |
| x |
¢ÚÉèÕý·½ÐÎAEGFµÄ±ß³¤Îªa£¬ÔòAE=AF=a£¬¸ù¾Ý×ø±êÓëͼÐεĹØÏµµÃµ½B£¨2+a£¬0£©£©£¬A£¨2+a£¬3£©£¬ËùÒÔFµã×ø±êΪ£¨2+a£¬3-a£©£¬ÓÚÊÇÀûÓ÷´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷µÃ£¨2+a£©£¨3-a£©=6£¬È»ºó½âÒ»Ôª¶þ´Î·½³Ì¿ÉÈ·¶¨aµÄÖµ£¬´Ó¶øµÃµ½Fµã×ø±ê£»
£¨2£©µ±AE£¾EGʱ£¬¼ÙÉè¾ØÐÎAEGFÓë¾ØÐÎDOHEÈ«µÈ£¬ÔòAE=OD=3£¬AF=DE=2£¬ÔòµÃµ½Fµã×ø±êΪ£¨3£¬3£©£¬¸ù¾Ý·´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¿ÉÅжϵãF£¨3£¬3£©²»ÔÚ·´±ÈÀýº¯Êýy=
| 6 |
| x |
µ±AE£¾EGʱ£¬Èô¾ØÐÎAEGFÓë¾ØÐÎDOHEÏàËÆ£¬¸ù¾ÝÏàËÆµÄÐÔÖʵÃAE£ºOD=AF£ºDE£¬¼´
| AE |
| AF |
| OD |
| DE |
| 3 |
| 2 |
ÀûÓ÷´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷µÃ£¨2+3t£©£¨3-2t£©=6£¬½âµÃt1=0£¨ÉáÈ¥£©£¬t2=
| 5 |
| 6 |
| 5 |
| 2 |
| AE |
| OD |
| 5 |
| 6 |
½â´ð£º
½â£º£¨1£©¢Ù¡ßËıßÐÎABODΪ¾ØÐΣ¬EH¡ÍxÖᣬ
¶øOD=3£¬DE=2£¬
¡àEµã×ø±êΪ£¨2£¬3£©£¬
¡àk=2¡Á3=6£¬
¡à·´±ÈÀýº¯Êý½âÎöʽΪy=
£¨x£¾0£©£»
¢ÚÉèÕý·½ÐÎAEGFµÄ±ß³¤Îªa£¬ÔòAE=AF=a£¬
¡àBµã×ø±êΪ£¨2+a£¬0£©£©£¬Aµã×ø±êΪ£¨2+a£¬3£©£¬
¡àFµã×ø±êΪ£¨2+a£¬3-a£©£¬
°ÑF£¨2+a£¬3-a£©´úÈëy=
µÃ£¨2+a£©£¨3-a£©=6£¬½âµÃa1=1£¬a2=0£¨ÉáÈ¥£©£¬
¡àFµã×ø±êΪ£¨3£¬2£©£»
£¨2£©¢Ùµ±AE£¾EGʱ£¬¾ØÐÎAEGFÓë¾ØÐÎDOHE²»ÄÜÈ«µÈ£®ÀíÓÉÈçÏ£º
¼ÙÉè¾ØÐÎAEGFÓë¾ØÐÎDOHEÈ«µÈ£¬ÔòAE=OD=3£¬AF=DE=2£¬
¡àAµã×ø±êΪ£¨5£¬3£©£¬
¡àFµã×ø±êΪ£¨3£¬3£©£¬
¶ø3¡Á3=9¡Ù6£¬
¡àFµã²»ÔÚ·´±ÈÀýº¯Êýy=
µÄͼÏóÉÏ£¬
¡à¾ØÐÎAEGFÓë¾ØÐÎDOHE²»ÄÜÈ«µÈ£»
¢Úµ±AE£¾EGʱ£¬¾ØÐÎAEGFÓë¾ØÐÎDOHEÄÜÏàËÆ£®
¡ß¾ØÐÎAEGFÓë¾ØÐÎDOHEÄÜÏàËÆ£¬
¡àAE£ºOD=AF£ºDE£¬
¡à
=
=
£¬
ÉèAE=3t£¬ÔòAF=2t£¬
¡àAµã×ø±êΪ£¨2+3t£¬3£©£¬
¡àFµã×ø±êΪ£¨2+3t£¬3-2t£©£¬
°ÑF£¨2+3t£¬3-2t£©´úÈëy=
µÃ£¨2+3t£©£¨3-2t£©=6£¬½âµÃt1=0£¨ÉáÈ¥£©£¬t2=
£¬
¡àAE=3t=
£¬
¡àÏàËÆ±È=
=
=
£®
¶øOD=3£¬DE=2£¬
¡àEµã×ø±êΪ£¨2£¬3£©£¬
¡àk=2¡Á3=6£¬
¡à·´±ÈÀýº¯Êý½âÎöʽΪy=
| 6 |
| x |
¢ÚÉèÕý·½ÐÎAEGFµÄ±ß³¤Îªa£¬ÔòAE=AF=a£¬
¡àBµã×ø±êΪ£¨2+a£¬0£©£©£¬Aµã×ø±êΪ£¨2+a£¬3£©£¬
¡àFµã×ø±êΪ£¨2+a£¬3-a£©£¬
°ÑF£¨2+a£¬3-a£©´úÈëy=
| 6 |
| x |
¡àFµã×ø±êΪ£¨3£¬2£©£»
£¨2£©¢Ùµ±AE£¾EGʱ£¬¾ØÐÎAEGFÓë¾ØÐÎDOHE²»ÄÜÈ«µÈ£®ÀíÓÉÈçÏ£º
¼ÙÉè¾ØÐÎAEGFÓë¾ØÐÎDOHEÈ«µÈ£¬ÔòAE=OD=3£¬AF=DE=2£¬
¡àAµã×ø±êΪ£¨5£¬3£©£¬
¡àFµã×ø±êΪ£¨3£¬3£©£¬
¶ø3¡Á3=9¡Ù6£¬
¡àFµã²»ÔÚ·´±ÈÀýº¯Êýy=
| 6 |
| x |
¡à¾ØÐÎAEGFÓë¾ØÐÎDOHE²»ÄÜÈ«µÈ£»
¢Úµ±AE£¾EGʱ£¬¾ØÐÎAEGFÓë¾ØÐÎDOHEÄÜÏàËÆ£®
¡ß¾ØÐÎAEGFÓë¾ØÐÎDOHEÄÜÏàËÆ£¬
¡àAE£ºOD=AF£ºDE£¬
¡à
| AE |
| AF |
| OD |
| DE |
| 3 |
| 2 |
ÉèAE=3t£¬ÔòAF=2t£¬
¡àAµã×ø±êΪ£¨2+3t£¬3£©£¬
¡àFµã×ø±êΪ£¨2+3t£¬3-2t£©£¬
°ÑF£¨2+3t£¬3-2t£©´úÈëy=
| 6 |
| x |
| 5 |
| 6 |
¡àAE=3t=
| 5 |
| 2 |
¡àÏàËÆ±È=
| AE |
| OD |
| ||
| 3 |
| 5 |
| 6 |
µãÆÀ£º±¾Ì⿼²éÁË·´±ÈÀýº¯ÊýµÄ×ÛºÏÌâ£ºÕÆÎÕ·´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢¾ØÐεÄÐÔÖʺÍͼÐÎÈ«µÈµÄÐÔÖÊ¡¢ÏàËÆµÄÐÔÖÊ£»Àí½âͼÐÎÓë×ø±êµÄ¹ØÏµ£»»á½âÒ»Ôª¶þ´Î·½³Ì£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿