题目内容

如图,已知点D为等边△ABC中AC边上一点,点E为AB边上一点,且CD=AE.过点E作EF⊥BD于点F,BD与CE交于点P.求证:PF=
1
2
PE.
考点:全等三角形的判定与性质,等边三角形的性质,含30度角的直角三角形
专题:证明题
分析:由三角形ABC为等边三角形得到AC=BC,且∠A=∠ACB=60°,再有AE=CD,利用SAS得到三角形AEC与三角形CDB全等,利用全等三角形的对应角相等得到∠ACE=∠CBD,再有∠ACB=∠ACE+∠ECB=60°,等量代换及利用外角性质得到∠EPB=60°,进而确定出∠PEF为30°,在直角三角形PEF中,利用30度角所对的直角边等于斜边的一半即可得证.
解答:证明:∵△ABC为等边三角形,
∴AC=BC,∠A=∠ACB=60°,
在△AEC和△CDB中,
AE=CD
∠A=∠ACB=60°
AC=CB

∴△AEC≌△CDB(SAS),
∴∠ACE=∠CBD,
∵∠ACE+∠ECB=60°,
∴∠CBD+∠ECB=60°,
∵∠EPB为△PBC的外角,
∴∠EPB=60°,
∴在Rt△EFP中,∠PEF=30°,
则PF=
1
2
PE.
点评:此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网