题目内容
11.点A(a,b)是一次函数y=-x+3与反比例函数$y=\frac{2}{x}$的交点,则$\frac{1}{a}+\frac{1}{b}$的值$\frac{3}{2}$.分析 由$\left\{\begin{array}{l}{y=\frac{2}{x}}\\{y=-x+3}\end{array}\right.$解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,可得A(1,2)或(2,1),由此即可解决问题.
解答 解:由$\left\{\begin{array}{l}{y=\frac{2}{x}}\\{y=-x+3}\end{array}\right.$解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,
∴A(1,2)或(2,1),
∴$\frac{1}{a}$+$\frac{1}{b}$=$\frac{3}{2}$,
故答案为$\frac{3}{2}$.
点评 本题考查反比例函数与由此函数的交点坐标,解题的关键是学会利用方程组求两个函数的交点坐标,属于基础题.
练习册系列答案
相关题目