题目内容
考点:梯形,角平分线的性质,勾股定理
专题:
分析:首先过点D作DE⊥AB于点E,易得四边形BCDE是矩形,则可由勾股定理求得AE的长,易得△ACD是等腰三角形,则可求得CD与BE的长,继而求得答案.
解答:
解:过点D作DE⊥AB于点E,
∵在梯形ABCD中,AB∥CD,
∴四边形BCDE是矩形,
∴CD=BE,DE=BC=4cm,∠DEA=90°,
∴AE=
=3(cm),
∵AB∥CD,
∴∠DCA=∠BAC,
∵∠DAC=∠BAC,
∴∠DAC=∠DCA,
∴CD=AD=5cm,
∴BE=5cm,
∴AB=AE+BE=8(cm),
∴梯形ABCD的周长为:AB+BC+CD+AD=8+4+5+5=22(cm).
故答案为:22.
∵在梯形ABCD中,AB∥CD,
∴四边形BCDE是矩形,
∴CD=BE,DE=BC=4cm,∠DEA=90°,
∴AE=
| AD2-DE2 |
∵AB∥CD,
∴∠DCA=∠BAC,
∵∠DAC=∠BAC,
∴∠DAC=∠DCA,
∴CD=AD=5cm,
∴BE=5cm,
∴AB=AE+BE=8(cm),
∴梯形ABCD的周长为:AB+BC+CD+AD=8+4+5+5=22(cm).
故答案为:22.
点评:此题考查了梯形的性质、等腰三角形的判定与性质、矩形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关题目