题目内容

13.已知在△ABC中,AB=5,BC=2,且AC为奇数.
(1)求△ABC的周长;
(2)判断△ABC的形状.

分析 (1)首先根据三角形的三边关系定理可得5-2<AC<5+2,再根据AC为奇数确定AC的值,进而可得周长;
(2)根据等腰三角形的判定可得△ABC是等腰三角形.

解答 解:(1)由题意得:5-2<AC<5+2,
即:3<AC<7,
∵AC为奇数,
∴AC=5,
∴△ABC的周长为5+5+2=12;

(2)∵AB=AC,
∴△ABC是等腰三角形.

点评 此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网