题目内容
放假了,小明与小颖两家准备从红河湿地、台儿庄古城、莲青山中选择一景点游玩,小明与小颖通过抽签方式确定景点,则两家抽到同一景点的概率是( )
A. B. C. D.
如图,一次函数y=-x+2分别交y轴、x轴于A、B两点,抛物线y=-+bx+c过A、B两点.
(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.
如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=( ).
A.30° B. 40° C. 50° D. 60°
已知m,n是方程的两个实数根,则 .
如果x:(x+y)=3:5,那么x:y=( )
(本题满分12分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.
(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.
(2)请在(1)的基础上,完成下列填空:
①写出点的坐标:C 、D ;
②⊙D的半径= (结果保留根号);
③∠ADC的度数为 .
④网格图中是否存在过点B的直线BE是⊙D的切线,如果没有,请说明理由;如果有,请直接写出直线BE的函数解析式。
(本题满分8分)已知关于x的方程4x2﹣(k+2)x+k﹣1=0有两个相等的实根,
(1)求k的值;
(2)求此时方程的根.
关于x的一元二次方程x2+x-a2=0 的根的情况为( ).
A.有两个不相等的实数根 B.有两个相等的实数根
C.只有一个实数根 D.没有实数根
如图,AB是⊙O的直径,∠ACB=90°.弦BC=2cm,点 F是弦BC的中点,∠ABC=60°.若动点E从A点出发沿着A→B方向运动,连接EF、CE,则EF+CE最小值是 .