题目内容

18.如图,∠C=∠E,∠EAC=∠DAB,AB=AD.求证:BC=DE.

分析 因为∠DAB=∠EAC,从图上可以看出∠DAB+∠BAE=∠EAC+∠BAE,即∠DAE=∠BAC,又因为,∠C=∠E,AB=AD,所以很容易证明△DAE≌△BAC,从而得出结论.

解答 证明:∵∠DAB=∠EAC,
∴∠DAB+∠BAE=∠EAC+∠BAE,
即∠DAE=∠BAC,
在△DAE和△BAC中$\left\{\begin{array}{l}{∠C=∠E}\\{∠BAC=∠DAE}\\{AB=AD}\end{array}\right.$,
∴△DAE≌△BAC,
∴BC=DE.

点评 本题考查全等三角形的判定定理,根据ASA可证明三角形全等,从而可得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网