题目内容

19.如图所示,在⊙O中,半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则EC的长度为(  )
A.2$\sqrt{5}$B.8C.2$\sqrt{10}$D.2$\sqrt{13}$

分析 首先连接BE,由⊙O的半径OD⊥弦AB于点C,AB=8,CD=1,根据垂径定理可求得AC=BC=4,然后设OA=x,利用勾股定理可得方程:42+(x-1)2=x2,则可求得半径的长,继而利用三角形中位线的性质,求得BE的长,又由AE是直径,可得∠B=90°,继而求得答案.

解答 解:连接BE,

∵⊙O的半径OD⊥弦AB于点C,AB=8,
∴AC=BC=4,
设OA=x,
∵CD=2,
∴OC=x-2,
在Rt△AOC中,AC2+OC2=OA2
∴42+(x-2)2=x2
解得:x=5,
∴OA=OE=5,OC=3,
∴BE=2OC=6,
∵AE是直径,
∴∠B=90°,
∴CE=$\sqrt{B{C}^{2}+B{E}^{2}}$=2$\sqrt{13}$,
故选:D.

点评 此题考查了圆周角定理、垂径定理、勾股定理以及三角形中位线的性质.注意准确作出辅助线是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网