题目内容
6.| A. | B. | C. | D. |
分析 利用点A、B、C、D、E、F为⊙O的六等分点可得到∠BOC=∠COD=60°,所以P在O点时,∠BPD=120°,P在弧EF上时,∠BPD=$\frac{1}{2}$∠BOD=60°,然后分类讨论:当点P从O点运动到E点时,易得y由120°逐渐减小到60°;当点P在弧EF上运动时,y=60°;当点P从F点运动到O点时,易得y由60°逐渐增大到120°,根据此特征可对四个选项进行判断.
解答 解:因为点A、B、C、D、E、F为⊙O的六等分点,![]()
所以∠BOC=∠COD=60°,
当P在O点时,∠BPD=120°,当P在弧EF上时,∠BPD=$\frac{1}{2}$∠BOD=60°,
当点P从O点运动到E点时,y由120°逐渐减小到60°;当点P在弧EF上运动时,y的值不变,为60°;当点P从F点运动到O点时,y由60°逐渐增大到120°.
故选C.
点评 本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是圆周角定理的应用.
练习册系列答案
相关题目
14.
如图是由一副三角尺拼成的图案,它们有公共顶点O,且有一部分重叠,已知∠BOD=40°,则∠AOC的度数是( )
| A. | 40° | B. | 120° | C. | 140° | D. | 150° |
11.在等腰△ABC中,∠A=4∠B,则∠C的度数为( )
| A. | 30° | B. | 60° | C. | 30°或80° | D. | 60°或80° |
18.数据50,20,50,30,25,50,55的众数和中位数分别是( )
| A. | 50,30 | B. | 50,40 | C. | 50,50 | D. | 50,55 |
15.化简|-2|,-(-2)2,-(-2),(-2)3这四个数中,负数的个数有( )
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |