题目内容

8.顶角为36°的等腰三角形称为黄金三角形(即:点D是AC的黄金分割点),如图,在△ABC中,AB=AC=1,∠A=36°,BD是三角形ABC的角平分线,那么AD=$\frac{\sqrt{5}-1}{2}$.

分析 先根据等腰三角形的性质和三角形内角和计算出∠ABC=∠C=72°,再根据角平分线定义得到∠ABD=∠CBD=36°,易得AD=BC=BD,然后证明△ABC∽△BCD,利用相似得性质得AC:BC=BC:CD,则AC:AD=AD:CD,于是根据黄金分割点的定义得到点D为AC的黄金分割点,易得AD=$\frac{\sqrt{5}-1}{2}$.

解答 解:∵AB=AC=1,∠A=36°,
∴∠ABC=∠C=72°,
∵BD是△ABC的角平分线,
∴∠ABD=∠CBD=36°,
∴DA=DB,
∵∠BDC=∠A+∠ABD=72°,
∴BD=BC,
∴AD=BC=BD,
∵∠A=∠CBD,∠ACB=∠BCD,
∴△ABC∽△BCD,
∴AC:BC=BC:CD,
∴AC:AD=AD:CD,
∴点D为AC的黄金分割点,
∴AD=$\frac{\sqrt{5}-1}{2}$AB=$\frac{\sqrt{5}-1}{2}$.
故答案为$\frac{\sqrt{5}-1}{2}$.

点评 本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点. 其中AC=$\frac{\sqrt{5}-1}{2}$AB≈0.618AB,并且线段AB的黄金分割点有两个.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网