题目内容
8.分析 先根据等腰三角形的性质和三角形内角和计算出∠ABC=∠C=72°,再根据角平分线定义得到∠ABD=∠CBD=36°,易得AD=BC=BD,然后证明△ABC∽△BCD,利用相似得性质得AC:BC=BC:CD,则AC:AD=AD:CD,于是根据黄金分割点的定义得到点D为AC的黄金分割点,易得AD=$\frac{\sqrt{5}-1}{2}$.
解答 解:∵AB=AC=1,∠A=36°,
∴∠ABC=∠C=72°,
∵BD是△ABC的角平分线,
∴∠ABD=∠CBD=36°,
∴DA=DB,
∵∠BDC=∠A+∠ABD=72°,
∴BD=BC,
∴AD=BC=BD,
∵∠A=∠CBD,∠ACB=∠BCD,
∴△ABC∽△BCD,
∴AC:BC=BC:CD,
∴AC:AD=AD:CD,
∴点D为AC的黄金分割点,
∴AD=$\frac{\sqrt{5}-1}{2}$AB=$\frac{\sqrt{5}-1}{2}$.
故答案为$\frac{\sqrt{5}-1}{2}$.
点评 本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点. 其中AC=$\frac{\sqrt{5}-1}{2}$AB≈0.618AB,并且线段AB的黄金分割点有两个.
练习册系列答案
相关题目
13.
在数轴上,A、B两点的位置如图所示,那么下列说法中,错误的是( )
| A. | 点A表示的数是负数 | B. | 点B表示的数是负数 | ||
| C. | 点A表示的数比点B表示的数大 | D. | 点B表示的数比0小 |
17.下列图形不是轴对称图形的是( )
| A. | B. | C. | D. |