题目内容
已知点M(3a-9,1-a)在第三象限,且它的坐标都是整数,则a=( )
A. 1 B. 2 C. 3 D. 4
如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a,b,c为常数a≠0)与x轴,y轴分别交于A,B,C三点,已知A(-1,0),B(3,0),C(0,3),动点E从抛物线的顶点点D出发沿线段DB向终点B运动.(1)直接写出抛物线解析式和顶点D的坐标;(2)过点E作EF⊥y轴于点F,交抛物线对称轴左侧的部分于点G,交直线BC于点H,过点H作HP⊥x轴于点P,连接PF,求当线段PF最短时G点的坐标;(3)在点E运动的同时,另一个动点Q从点B出发沿直线x=3向上运动,点E的速度为每秒个单位长度,点Q速度均为每秒1个单位长度,当点E到达终点B时点Q也随之停止运动,设点E的运动时间为t秒,试问存在几个t值能使△BEQ为等腰三角形?并直接写出相应t值.
我市6月份某一周每天的最高气温为(单位:℃):24,25,28,30,31,33,那么这一周每天最高气温的中位数是__.
右图是一个正方体的展开图,标注了字母“a”的面是正方体的正面.如果正方体相对两个面上的式子的值相等,求x,y的值.
如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正确的结论有( )
A. 5个 B. 4个
C. 3个 D. 2个
如图,在平面直角坐标系中,点A的坐标为(0,2),点P(t,0)在x轴上,B是线段PA的中点.将线段PB绕着点P顺时针方向旋转90°,得到线段PC,连结OB、BC.
(1)判断△PBC的形状,并简要说明理由;
(2)当t>0时,试问:以P、O、B、C为顶点的四边形能否为平行四边形?若能,求出相应的t的值?若不能,请说明理由;
(3)当t为何值时,△AOP与△APC相似?
计算(1);(2)
与是同类二次根式的是( ).
A. B. C. D.
二次函数的顶点坐标为______。