题目内容
与是同类二次根式的是( ).
A. B. C. D.
如图所示,抛物线y=ax2+bx+c与直线y=﹣x+6分别交于x轴和y轴上同一点,交点分别是点B和点C,且抛物线的对称轴为直线x=4.
(1)求出抛物线与x轴的两个交点A,B的坐标.
(2)试确定抛物线的解析式.
已知点M(3a-9,1-a)在第三象限,且它的坐标都是整数,则a=( )
A. 1 B. 2 C. 3 D. 4
最简二次根式与是同类二次根式,则a=_______.
如图,在直角坐标系中,矩形OABC的顶点O是坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是( )
A. (3,2) B. (-2,-3)
C. (2,3)或(-2,-3) D. (3,2)或(-3,-2)
如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.
(1)求证:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的长.
解不等式组,并把解集在数轴上表示出来.
如图,已知一条直线过点(0,4),且与抛物线交于A,B两点,其中点A的横坐标是-2。
(1)求这条直线的解析式及点B的坐标;
(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由。
(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?
如图,矩形ABCD中,AD=2AB,E、F、G、H分别是AB,BC,CD,AD边上的点,EG⊥FH,FH=2,则四边形EFGH的面积为( )
A. 6 B. 12 C. 12 D. 24