题目内容
一元二次方程的根的情况是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.没有实数根
D.只有一个实数根
已知抛物线y=ax2-2ax+c与y轴交于C点,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且|OC|=3|OA|
(1)求抛物线的函数表达式;
(2)直接写出直线BC的函数表达式;
(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2).
求:①s与t之间的函数关系式;
②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.
(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.
如图,AB是⊙O的直径,点D、E是半圆的三等分点,AE,BD的延长线交于点C。若CE=2,则图中阴影部分的面积是( )
A. B.— C. D.—
如图,点E是边长为12的正方形ABCD边BC上的一点,BE=5.点F在该正方形的边上运动,当BF=AE时,设线段AE与线段BF相交于点H,则BH的长等于 .
如图,以正方形ABCD的对角线AC为边作菱形AEFC,点E在边AB的延长线上,则∠FAE的度数为( )
A.15° B.22.5° C.30° D.37.5°
已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD.
(1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.求证:BD=CE,BD⊥CE.
(2)如图2,当点D在线段BC延长线上时,探究AD、BD、CD三条线段之间的数量关系,写出结论并说明理由;
(3)若BD=CD,直接写出∠BAD的度数.
如图,将边长为1的正三角形沿轴正方向连续翻转2015次,点依次落在点P1,P2,P3,……P2015的位置,则点P2015的横坐标为 .
下列图形属于中心对称图形的是( )
如图,⊙O中,弦AC=,沿AC折叠劣弧交直径AB于D,DB=,则直径AB=( )
A.4 B. C. D.