题目内容

2.若x2+y2+2x-6y+10=0,x、y均为有理数,则xy的值为-3.

分析 先将x2+y2+2x-6y+10=0,整理成平方和的形式,再根据非负数的性质可求出x、y的值,进而可求出xy的值.

解答 解:由题意得:x2+y2+2x-6y+10=(x+1)2+(y-3)2=0,
由非负数的性质得x=-1,y=3.
则xy=-1×3=-3.
故答案为-3.

点评 本题考查了配方法的应用,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.

练习册系列答案
相关题目
7.阅读下列材料,然后解答问题:
在进行二次根式的化简与运算时,我们有时会碰上如:$\frac{3}{\sqrt{5}}$,$\sqrt{\frac{2}{3}}$,$\frac{2}{\sqrt{3}+1}$一样的式子.其实我们还可以将其进一步化简:
$\frac{3}{\sqrt{5}}$=$\frac{3×\sqrt{5}}{\sqrt{5}×\sqrt{5}}$=$\frac{3\sqrt{5}}{5}$:(一) $\sqrt{\frac{2}{3}}$=$\frac{\sqrt{2×3}}{\sqrt{3×3}}$=$\frac{\sqrt{6}}{3}$:(二)
$\frac{2}{\sqrt{3}+1}$=$\frac{2(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}$=$\frac{2(\sqrt{3}-1)}{(\sqrt{3})^{2}-1}$=$\sqrt{3}-1$:(三)
以上这种化简的步骤叫做分母有理化.
$\frac{2}{\sqrt{3}+1}$还可以用以下方法化简:
$\frac{2}{\sqrt{3}+1}$=$\frac{3-1}{\sqrt{3}+1}$=$\frac{(\sqrt{3})^{2}-1}{\sqrt{3}+1}$=$\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{\sqrt{3}+1}$=$\sqrt{3}-1$.(四)
请解答下列问题:
(1)请用不同的方法化简$\frac{2}{\sqrt{5}+\sqrt{3}}$.
①参照(三)式得$\frac{2}{\sqrt{5}+\sqrt{3}}$=$\sqrt{5}$-3;
②参照(四)式得$\frac{2}{\sqrt{5}+\sqrt{3}}$=$\frac{(\sqrt{5})^{2}-(\sqrt{3})^{2}}{\sqrt{5}+\sqrt{3}}$=$\frac{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}{\sqrt{5}+\sqrt{3}}$=$\sqrt{5}$-$\sqrt{3}$;
(2)化简:$\frac{2}{\sqrt{3}+1}$+$\frac{2}{\sqrt{5}+\sqrt{3}}$+$\frac{2}{\sqrt{7}+\sqrt{5}}$;(保留过程)
(3)猜想:$\frac{1}{\sqrt{3}+1}$+$\frac{1}{\sqrt{5}+\sqrt{3}}$+$\frac{1}{\sqrt{7}+\sqrt{5}}$+…+$\frac{1}{\sqrt{2n+1}+\sqrt{2n-1}}$的值.(直接写出结论)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网